3A: Multifunctional Performance of Engineered Composites Enabled by Additive Manufacturing and Nanoengineering


The emergence of micro-, nano-, and molecularly-tailored multi-material systems, particularly those enabled by additive manufacturing (AM) technologies, facilitates the design of new and enhanced functionalities. Building from advances in various disciplines including decades-long work on bulk microfiber heterogeneous composites, multi-material printing offers the possibility of cost-effective automation of the fabrication process and provides greater flexibility for locally tailoring the material architecture in three-dimensions. This talk will provide an overview of four such multidisciplinary research activities of my group enabled by AM and Nanoengineering: (i) enhanced performance of multilayers (compliance-tailoring, morphology-tailoring and surface-tailoring); (ii) biomaterials and bio-inspired design of materials (smart-nanocomposites for orthopedics, material-tailored nacreous composites, piezoresistive nanocomposites for sensing and 4D printing of morphing structures); (iii) multiscale and multifunctional fiber composites (hierarchical/multiscale composites, and camouflage composites) and (iv) architected and metamaterials (energy absorbing structures, batteries and supercapacitors, compact heat-exchangers, EMI shields, self-sensing scaffolds).  Manipulating materials at ever smaller scales, in 3D and 4D, allows for strain-, stress- and functional-engineering towards enhanced performance, but also opens new opportunities in fabrication. The convergence of emerging nanoscale AM techniques and the ability to design nano- and micro-architected hierarchical structures with ever-more-tightly controlled geometry will enable the creation of new classes of materials with unprecedented properties optimized for location-specific structural and/or functional requirements.


Prof. Kumar Shanmugam

University of Glasgow, UK